Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 63(4): 467-479, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30712063

RESUMO

In a context of urban warming, the effects of trees on outdoor thermal stress are important even during the increasingly hot autumn season. This study examines the effects of a deciduous tree species (Tilia x europaea L) on surface temperature over different ground materials and in turn on human thermal comfort, with a particular focus on tree shade variation due to leaf fall. Grass, asphalt, and gravel-covered ground surfaces, both sun-exposed and under the Tilia, were monitored in Florence, Italy, during the summer (2014) and autumn (2017) seasons. The Index of Thermal Stress (ITS) was used to gauge the micrometeorological effects of the changing tree canopy, with tree defoliation quantified by the Plant Area Index. On clear summer days, thermal discomfort was especially pronounced over exposed asphalt, and even more intense above exposed gravel due to its higher reflectivity-while shaded surfaces showed large reductions in thermal stress. Even though incoming solar radiation decreases over the course of the fall season, the direct radiation under the gradually defoliating tree canopy actually increases. Due to this diminished shading effect, the differences in surface temperature between exposed and shaded asphalt shrink dramatically from about 20 to 3 °C. However, since ambient conditions become milder as the season progresses, the Tilia demonstrated a double benefit in terms of ITS: providing thermal comfort under its full canopy at the beginning of autumn and maintaining comfort even as its canopy thins out. At the same time, tree species with earlier defoliation may be unable to replicate such benefits.


Assuntos
Transtornos de Estresse por Calor/prevenção & controle , Tilia , Humanos , Estações do Ano , Temperatura , Sensação Térmica , Árvores
2.
J Environ Qual ; 45(1): 90-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26828164

RESUMO

The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban renovation on microclimate.


Assuntos
Temperatura , Cidades , Humanos , Microclima , Solo , Vento
3.
J Environ Qual ; 45(1): 146-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26828170

RESUMO

There is growing interest in the role that urban forests can play as urban microclimate modifiers. Tree shade and evapotranspiration affect energy fluxes and mitigate microclimate conditions, with beneficial effects on human health and outdoor comfort. The aim of this study was to investigate surface temperature () variability under the shade of different tree species and to test the capability in predicting of a proposed heat transfer model. Surface temperature data on asphalt and grass under different shading conditions were collected in the Cascine park, Florence, Italy, and were used to test the performance of a one-dimensional heat transfer model integrated with a routine for estimating the effect of plant canopies on surface heat transfer. Shading effects of 10 tree species commonly used in Italian urban settings were determined by considering the infrared radiation and the tree canopy leaf area index (LAI). The results indicate that, on asphalt, was negatively related to the LAI of trees ( reduction ranging from 13.8 to 22.8°C). On grass, this relationship was weaker probably because of the combined effect of shade and grass evapotranspiration on ( reduction ranged from 6.9 to 9.4°C). A sensitivity analysis confirmed that other factors linked to soil water content play an important role in reduction of grassed areas. Our findings suggest that the energy balance model can be effectively used to estimate of the urban pavement under different shading conditions and can be applied to the analysis of microclimate conditions of urban green spaces.


Assuntos
Microclima , Árvores , Humanos , Folhas de Planta , Poaceae , Solo , Temperatura
4.
PLoS One ; 10(12): e0144468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26714309

RESUMO

The frequency of natural hazards has been increasing in the last decades in Europe and specifically in Mediterranean regions due to climate change. For example heavy precipitation events can lead to disasters through the interaction with exposed and vulnerable people and natural systems. It is therefore necessary a prevention planning to preserve human health and to reduce economic losses. Prevention should mainly be carried out with more adequate land management, also supported by the development of an appropriate risk prediction tool based on weather forecasts. The main aim of this study is to investigate the relationship between weather types (WTs) and the frequency of floods and landslides that have caused damage to properties, personal injuries, or deaths in the Italian regions over recent decades. In particular, a specific risk index (WT-FLARI) for each WT was developed at national and regional scale. This study has identified a specific risk index associated with each weather type, calibrated for each Italian region and applicable to both annual and seasonal levels. The risk index represents the seasonal and annual vulnerability of each Italian region and indicates that additional preventive actions are necessary for some regions. The results of this study represent a good starting point towards the development of a tool to support policy-makers, local authorities and health agencies in planning actions, mainly in the medium to long term, aimed at the weather damage reduction that represents an important issue of the World Meteorological Organization mission.


Assuntos
Inundações/estatística & dados numéricos , Deslizamentos de Terra/estatística & dados numéricos , Tempo (Meteorologia) , Itália , Medição de Risco , Estações do Ano
5.
Environ Pollut ; 192: 259-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24845237

RESUMO

Urban planners and managers need tools to evaluate the performance of the present state and future development of cities in terms of comfort and quality of life. In this paper, an approach to analyse the intra-urban summer thermal variability, using an urban planning indicator, is presented. The proportion of buildings and concrete surfaces in a specific buffer area are calculated. Besides, the relationship between urban and temperature indicators is investigated and used to produce thermal maps of the city. This approach is applied to the analysis of intra-urban variability in Florence (Italy), of two thermal indices (heat index and cooling degree days) used to evaluate impacts on thermal comfort and energy consumption for indoor cooling. Our results suggest that urban planning indicators can describe intra-urban thermal variability in a way that can easily be used by urban planners for evaluating the effects of future urbanization scenarios on human health.


Assuntos
Planejamento de Cidades/métodos , Monitoramento Ambiental/métodos , Temperatura Alta , Urbanização/tendências , Cidades , Humanos , Itália , Estações do Ano
6.
Int J Biometeorol ; 58(2): 277-308, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550042

RESUMO

Here we present, for the first time, a glossary of biometeorological terms. The glossary aims to address the need for a reliable source of biometeorological definitions, thereby facilitating communication and mutual understanding in this rapidly expanding field. A total of 171 terms are defined, with reference to 234 citations. It is anticipated that the glossary will be revisited in coming years, updating terms and adding new terms, as appropriate. The glossary is intended to provide a useful resource to the biometeorology community, and to this end, readers are encouraged to contact the lead author to suggest additional terms for inclusion in later versions of the glossary as a result of new and emerging developments in the field.


Assuntos
Meteorologia/classificação , Terminologia como Assunto , Vocabulário Controlado
7.
Int J Biometeorol ; 57(6): 845-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23238531

RESUMO

This study analyzes the effect of weather variables, such as solar radiation, indoor and outdoor air temperature, relative humidity and time spent outdoor, on the behavior of 2-year-old children and their affects across different seasons: winter, spring and summer. Participants were a group of 61 children (33 males and 28 females) attending four day-care centers in Florence (Central Italy). Mean age of children at the beginning of the study was 24.1 months (SD = 3.6). We used multilevel linear analyses to account for the hierarchical structure of our data. The study analyzed the following behavioral variables: Activity Level, Attentional Focusing, Frustration, and Aggression. Results showed a different impact of some weather variables on children's behavior across seasons, indicating that the weather variable that affects children's behavior is usually the one that shows extreme values during the studied seasons, such as air temperature and relative humidity in winter and summer. Studying children and their reactions to weather conditions could have potentially wide-reaching implications for parenting and teaching practices, as well as for researchers studying social relationships development.


Assuntos
Agressão/fisiologia , Comportamento Infantil/fisiologia , Hospital Dia/estatística & dados numéricos , Frustração , Estações do Ano , Tempo (Meteorologia) , Pré-Escolar , Meio Ambiente , Feminino , Humanos , Itália/epidemiologia , Masculino
8.
Int J Biometeorol ; 55(3): 327-37, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20607307

RESUMO

This study aimed to analyze the impact of winter weather conditions on young children's behavior and affective states by examining a group of 61 children attending day-care centers in Florence (Italy). Participants were 33 males, 28 females and their 11 teachers. The mean age of the children at the beginning of the observation period was 24.1 months. The day-care teachers observed the children's behavioral and emotional states during the morning before their sleeping time and filled in a questionnaire for each baby five times over a winter period of 3 weeks. Air temperature, relative humidity, air pressure and solar radiation data were collected every 15 min from a weather station located in the city center of Florence. At the same time, air temperature and relative humidity data were collected in the classroom and in the garden of each day-care center. We used multilevel linear models to evaluate the extent to which children's emotional and behavioral states could be predicted by weather conditions, controlling for child characteristics (gender and age). The data showed that relative humidity and solar radiation were the main predictors of the children's emotional and behavioral states. The outdoor humidity had a significant positive effect on frustration, sadness and aggression; solar radiation had a significant negative effect only on sadness, suggesting that a sunny winter day makes children more cheerful. The results are discussed in term of implications for parents and teachers to improve children's ecological environment.


Assuntos
Comportamento Infantil/fisiologia , Creches , Emoções/fisiologia , Estações do Ano , Tempo (Meteorologia) , Adulto , Pressão do Ar , Comportamento Infantil/psicologia , Comportamento Infantil/efeitos da radiação , Pré-Escolar , Cidades , Emoções/efeitos da radiação , Docentes , Feminino , Humanos , Umidade , Lactente , Itália , Masculino , Luz Solar , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...